Отваря главното меню

Гликолизата (или глюколизата) представлява катаболитна поредица от реакции, при които от една молекула глюкоза се получават две молекули пирува̀т. При анаеробни условия той се преобразува в лактат или алкохол. Смята се, че гликолизата е един от първите метаболитни пътища в клетките, възникнал преди повече от 3,5 милиарда години. Гликолизата е процес, протичащ в цитоплазмата на всички клетки: от най-нисшите бактерии до най-висшия бозайник – човека. При някои тя е единственият метаболитен път за доставяне на енергия до клетката – например за бактериите, а за други тя е метаболитен път, в който се „сливат“ и други метаболити – белтъци и липиди.

Видове гликолизаРедактиране

Гликолизата протича и при аеробни и при анаеробни условия. Процесът, протичащ при анаеробни условия, се нарича ферментация – съответно алкохолна или млечнокисела ферментация. При аеробни условия процесът е цикличен, протичащ на няколко етапа, наречен е по името на откривателя му – цикъл на Кребс.

Етапи на гликолизатаРедактиране

Гликолизата е последователност от 10 реакции (стъпки), включващи 10 междинни химични съединения, разделена на две фази: подготвителна и фаза, добиваща енергия.

Етапи на гликолизата
Фаза Стъпка Описание Кофактор
Подготвителна фаза 1. Фосфорилиране на глюкозата от ензими (нар. хексокинази) до образуване на глюкозо-6-фосфат. Тази реакция използва АТФ. Благодарение на нея концентрацията на глюкозата се поддържа ниско, като се осигурява непрекъснат пренос на глюкоза в клетките чрез мембранните транспортери. Освен това, излизането на глюкоза от клетките е невъзможно, защото тя няма транспортери за глюкозо-6-фосфат. Mg2+
2. Изомеризация на глюкозо-6-фосфата във фруктозо-6-фосфат от фосфохексозна изомераза. Реакцията е обратима, но равновесието е изместено по посока на правата реакция, поради ниската концентрация на глюкозо-6-фосфат (консумира се непрекъснато в следващата реакция на гликолизата). Фруктозата също може да се включи в гликолитичния път чрез фосфорилиране в тази стъпка. Mg2+
3. Изразходване енергията на още една молекула АТФ, за превръщане на фруктозо-6-фосфат във фруктозо-1,6-бисфосфат. Гликолитичният процес е необратим и спечелената енергия дестабилизира молекулата. Тъй като реакцията, катализирана от фосфофруктокиназа 1, не е енергетично изгодна и е необратима, трябва да се използва друг път, за да се осъществи обратната реакция по време на глюконеогенезата. Това прави реакцията ключова регулаторна и скоростоопределяща. Mg2+
4. Дестабилизирането на молекулата в предната реакция, дава възможност на хексозния пръстен да се разкъса от алдолаза на две триозни захари- хидроацетон фосфат(кетон) и глицералдехид-3-фосфат(алдехид). Има два класа алдолази: клас 1, които се срещат при растения и животни, и клас 2, присъстващи при гъби и бактерии. Двата класа използват различни механизми за разкъсване на кетозния пръстен.
5. Триозофосфат изомеразата бързо превръща хидроацетонфосфата в глицералдехид-3-фосфат, който продължава в гликолизата. Това е печелившо, тъй като насочва хидроацетонфосфата по същия път като на глицералдехид-3-фосфат, опростявайки регулацията.
Добиваща енергия фаза 6. Триозните захари, получени в подготвителната фаза, се дехидрогенират и към тях се добавя неорганичен фосфат, като се получава 1,3-бисфосфоглицерат. Водородът се използва за редукция на две молекули НАД+ (водороден преносител), за да даде НАДН + Н+ за всяка триоза. Ензимът, който участва, е глицералдехид-3-фосфо дехидрогеназа. Балансът на водородния атом и балансът на заряда се запазват, защото фосфатната група всъщност съществува под формата на водородно фосфатен анион (НРО42-), който се дисоциира, допринасяйки още един Н+ йон и да даде окончателен заряд -3 и от двете страни.
7. Eнзимно катализиран пренос на фосфатна група от 1,3-бисфосфоглицерат върху АДФ от фосфоглицерат киназата, образувайки АТФ и 3-фосфо глицерат. Дотук 2 молекули АТФ бяха използвани и 2 нови молекули са синтезирани. Тази стъпка е една от двете стъпки на фосфорилиране на субстратно ниво и изисква АДФ. Следователно, когато клетката има излишък от АТФ, тази реакция не се извършва. Тъй като АТФ се разгражда много бързо, ако не се използва, това е важна регулаторна точка в гликолитичния път. АДФ всъщност съществува като АДФMg-, а АТФ като АТФMg2-, балансирайки зарядите -5 от двете страни. Mg2+
8. Фосфоглицерат мутазата превръща 3-фосфоглицерата в 2-фосфоглицерат.
9. Енолазата превръща 2-фосфоглицерата във фосфоенол пируват. 2Mg2+ 1.
10. В резултат на последното фосфорилиране на субстратно ниво, се получава молекула пируват и молекула АТФ чрез ензима пируват киназа. Това служи като допълнителна регулаторна стъпка, сходна с катализираната от фосфоглицерат киназата стъпка. Mg2+

1. Един „конформационен“ йон за свързване с карбоксилната група на субстрата и един “каталитичен ” йон, участващ в дехидратацията.

Регулация на гликолизатаРедактиране

Трите регулационни ензими са хексокиназа, фосфофрукто киназа и пируват киназа.

Гликолизата се регулира в зависимост от условията извън и вътре в клетката.