Интегрална схема
Интегрална схема (ИС, микрочип или чип) е електронна схема с миниатюрни размери, състояща се от полупроводникови устройства и пасивни компоненти. Реализира се обикновено върху тънък кристал от силиций или друг полупроводник (чип).
История
редактиранеРаждането на ИС
редактиранеПрез април 1949 немският учен Вернер Якоби (Siemens AG) патентова подобно на ИС усилващо устройство съдържащо 5 транзистора, подредени в схема на тристъпален усилвател. Якоби разработва малък и евтин слухов апарат като приложение на патента. Няма данни патентът да е бил използван за търговски цели.
Концепцията за ИС е разработвана и от учения Джефри Дъмър (Geoffrey Dummer, 1909 – 2002), който работи в областта на радарите за Министерството на отбраната на Великобритания. На 7 май 1952 г. представя концепция за интегрална схема по време на технологична конференция (Symposium on Progress in Quality Electronic Components) във Вашингтон – САЩ.[1]. Дъмър не успява да създаде работеща интегрална схема и след няколко неуспешни опита през 1956 г. Министерство на отбраната прекратява финансирането на проекта му.
Предшественик на ИС е идеята да се създадат малки керамични плочки (подложки), всяка от които да съдържа миниатюризиран компонент. Компонентите след това могат да бъдат интегрирани и свързани в двуизмерна или триизмерна решетка. Тази идея изглежда многообещаваща през 1957 г., предложена е на американската армия от Джак Килби и води до краткосрочния проект Micromodule Program[2] В хода на този проект Килби измисля нова революционна конструкция за ИС.
Първата ИС е създадена независимо от двама учени: Джак Килби от Texas Instruments, който патентова изобретението си като „Стабилна схема“, направена от германий, на 6 февруари 1959 г. Килби получава патенти със следните номера: Щатски патент 3 138 743, Щатски патент 3 138 747, Щатски патент 3 261 081 и Щатски патент 3 434 015. Робърт Нойс от Fairchild Semiconductor патентова по-сложна „единна схема“ направена от силиций на 25 април 1961. [3]
Други разработки
редактиранеВ началото на 80-те години са създадени програмируеми логически устройства. Тези устройства съдържат вериги, чиито логически функции и свързаност могат да бъдат програмирани от потребителя, а не да бъдат фиксирани от производителя. Това позволява единствен чип да може да изпълнява различни функции като логически елементи, суматори, и регистри. Последните схеми от този тип се наричат FPGA (Field Programmable Gate Arrays – интегрална схема, съдържаща програмируема логика).
Общи сведения
редактиранеИнтегралните схеми са миниатюрни електронни изделия, които съдържат голям брой елементи (транзистори, диоди, резистори), задължително изработени по една и съща технология и монтирани в общ корпус. Интегралните схеми повтарят известни електронни схеми с дискретни елементи: усилватели, стабилизатори, тригери и др.
С развитието на технологиите в интегрално изпълнение се правят и микропроцесори с милиони транзистори.
Изработването на ИС става възможно след напредъка на полупроводниковата технология в средата на 20 век и откритието, че полупроводниковите устройства могат успешно да изпълняват функциите на електронните лампи, с които са били реализирани електронните схеми дотогава. Първоначално полупроводниковите устройства са изработвани като отделни дискретни елементи, монтирани върху печатните платки. Много бързо обаче се преминава към още по-голяма миниатюризация – производството на много отделни елементи върху една силициева пластина по планарна технология. Големите предимства на ИС са значително по-малкият размер, надеждност, скорост и ниска консумация на ток. Миниатюризацията дава и възможност за многократно по-голям обем на производството и възможност за увеличаване на сложността на схемите. Не след дълго електронните лампи и печатните платки са изцяло заместени от ИС. Само половин век след откриването на ИС те са вече неразривна част от всяко електронно устройство и без тях са немислими съвременните комуникации (включително Интернет), наука, медицина, производство и транспорт. С тях е свързана и цифровата революция, която според мнозина е едно от най-значителните събития в историята на човечеството.
Видове
редактиранеВ зависимост от функционалното им предназначение, ИС могат да се класифицират като аналогови, цифрови и комбинирани. Цифровите се състоят главно от транзистори. Аналоговите схеми съдържат също така и резистори и кондензатори.
Цифрови интегрални схеми
редактиранеЦифровите ИС могат да съдържат в няколко квадратни милиметра от един до милиони отделни логически елементи, тригери и мултиплексори. Поради малкия размер на отделните елементи схемите работят с много малка разсеяна мощност и висока скорост и могат да бъдат изработвани с много по-ниска производствена цена от техните предшественици. Тези цифрови интегрални схеми са типично микропроцесори, DSP (Digital Signal Processor) и микроконтролери; работят като използват двоична бройна система и приемат „1“ и „0“ сигнали.
Аналогови интегрални схеми
редактиранеАналоговите ИС, като сензори, захранващи вериги, операционни усилватели, работят като обработват непрекъснати сигнали. Те изпълняват функции като усилване, филтриране, демодулация, честотно умножение на аналогови сигнали и др.
Комбинирани интегрални схеми
редактиранеКомбинираните ИС комбинират аналогови и цифрови вериги върху единствен чип за да създават устройства като Аналогово-цифров преобразувател (АЦП) и Цифрово-аналогов преобразувател (ЦАП). Такива схеми предлагат по-малък размер и по-ниска цена, но трябва да бъдат внимателно използвани заради интерференцията на сигналите.
В зависимост от технологията на производството им, могат да се разделят също на полупроводникови, слойни, хибридни и съвместими.
Полупроводникови интегрални схеми
редактиранеПредставляват малък изкуствен силициев кристал с размери 3×3 mm, в който се формират транзистори, диоди и резистори. Колкото по-наблизо са разположени транзисторите и колкото по-малка е тяхната площ, толкова интегралната схема е по-качествена.
Слойни интегрални схеми
редактиранеТе биват 2 вида – тънкослойни и дебелослойни.
Тънкослойни – изработват се върху малка подложка от изолационен материал (стъкло, керамика), като елементите са резистори, кондензатори и бобини с малка индуктивност. Не се изработват транзистори и диоди. Името тънкослойни идва от дебелината на елементите (до 5 µm). Чрез тънкослойната технология се изработват набори, съдържащи до 50 резистора и кондензатора.
Дебелослойни – не съдържат транзистори и диоди, а само резистори, кондензатори и бобини. Дебелината на елементите е 100 µm, интеграцията е до 50 елемента на една подложка. Изработват се без да има нужда от вакуум, и затова са по-евтини.
Хибридни интегрални схеми
редактиранеПодобни са на тънкослойните и дебелослойните, като първоначално се изработват резисторите и кондензаторите и се формират метални площадки, а след това към тях се запояват диодите и транзисторите, изработени по друга технология. Тези интегрални схеми са с малка степен на интеграция. По тази технология се произвеждат аналоговите интегрални схеми.
Разделението се извършва в зависимост и от други признаци:
- в зависимост от вида на транзисторите: биполярни, полеви (униполярни) и смесени.
- в зависимост от степента на интеграция биват:
- с малка степен на интеграция (до 10 елемента),
- със средна степен на интеграция (до 100 елемента),
- с голяма степен на интеграция (до 10 000 елемента) и
- свръхголяма степен на интеграция (над 10 000 елемента).
- в зависимост от мощността на разсейване биват:
маломощни (до 0,3 W), средномощни (до 3 W) и мощни (над 3 w)
- в зависимост от граничната честота: нискочестотни (до 3 MHz), средночестотни (до 30 MHz), високочестотни (до 300 MHz) и свръхвисокочестотни СВЧ (над 300 MHz)
- в зависимост от времето на превключване: с малко бързодействие (50 ns), средно бързодействие (5 ns), голямо бързодействие (под 5 ns).
Приложения
редактиранеПо-малко от половин век след създаването им ИС са широко разпространени. ИС са в основата на съвременната електроника – микропроцесорите, RAM паметите и ASIC чиповете намират приложение в компютрите, мобилните телефони домашните електроуреди, комуникациите, производството, транспортните системи и много други.
Всъщност много социолози смятат, че „създадената от ИС цифровата революция“ е едно от най-важните събития в човешката история.
Разработването на ИС е скъпо, но когато бъдат пуснати в масово производство, цената на единичната бройка намалява. Производителността на ИС е висока заради малкия размер, който позволява логически елементи с ниска консумация на електроенергия (като CMOS) да бъдат използвани при високи честоти.
Размерът на ИС е намалявал през годините, позволявайки повече елементи да бъдат интегрирани в един чип. Това увеличаване на капацитета може да бъде използвано за намаляване на цената или за увеличаване на функционалността – виж Закон на Мур, който в модерната си интерпретация гласи, че броят на транзисторите в ИС се удвоява на всеки две години. Най-общо казано с намаляването на размера почти всичко се подобрява – цената на единична бройка, консумираната мощност намалява и скоростта се увеличава.
Вижте също
редактиранеИзточници
редактиране- ↑ The Hapless Tale of Geoffrey Dummer Архив на оригинала от 2012-10-25 в Wayback Machine., (n.d.), (HTML), Electronic Product News, Посетен на 8 юли 2008.
- ↑ EETimes.com
- ↑ Виж The Chip that Jack built за повече информация.