Разлика между версии на „Хардуер“

18 байта изтрити ,  преди 1 година
м
Bot: Automated text replacement (- пък + , -((?:\b[569]|[02-9][569])(?:\<[Ss][Uu][Pp][^>]*\>)?)-?т?(а|ата|о|ото|и|ият?|ите)\b +\1-\2)
м (Общи промени)
м (Bot: Automated text replacement (- пък + , -((?:\b[569]|[02-9][569])(?:\<[Ss][Uu][Pp][^>]*\>)?)-?т?(а|ата|о|ото|и|ият?|ите)\b +\1-\2))
'''Памет с произволен (непосредствен) достъп''' или '''RAM''' ({{lang|en|на=от|random-access memory}}) е вид компютърна памет, която позволява неограничен достъп до произволна част от запаметените данни, за разлика от паметта с последователен достъп, и която има относително голяма скорост, за разлика от запаметяващи устройства като твърдите дискове. Най-често под RAM се разбира динамична памет с произволен достъп, която намира широко приложение като оперативна памет в изчислителната техника.
 
RAM е основната памет, която се адресира. Тя е голяма и по размер се доближава до виртуалното адресно пространство. Cache паметта трябва да е много бърза, затова се прави от статична рам памет и за всеки бит са нужни по 6 биполярни транзистора. Това отнема много място и отделя голямо количество топлина. За основната памет се използва DRAM (Dynamic RAM), базирана на друг принцип (MOS = Metal Oxide Semiconductor). Силицият е полупроводник, а SO2 е изолаторна пластина и върху нея е поставена метална плочка. Между металната плочка и силиция се получава кондензатор. В зависимост от посоката, в която е зареден n-островчето слиза надолу или се качва нагоре. В зависимост от това дали каналът е отворен, може или не може да се стигне от единия gate до другия. Така се пази 1 бит (1 или 0). Технически проблем е, че състоянието се пази от заряда на кондензатора, който е много малък, поради което се саморазрежда и критичното време за разреждането му е 2ms, т.е. помни само 2 ms. Затова на всеки 2 милисекунди кондензаторът трябва да се презарежда – така нареченият refresh на динамичната памет. Преминаването на ток между двата gate-a е деструктивно – разваля съдържанието, затова при четене съдържанието трябва да се възстанови. Въпреки това този вид памет се използва, защото е много икономична. Минимален ток => няма греене, а също така се постига огромна плътност (bit/mm2), което компенсира недостатъка с refresh-a. Поради наличието на капацитет на кондензатора четенето и писането е по-бавно от това в cache паметта, която е съставена от транзистори, пък били те и 6.
 
Intel първи разработват тези полупроводникови RAM памети. Заводите са много скъпи – един такъв струва няколко милиарда долара. Самите елементи се произвеждат в бели стаи. Плътността на полупроводниковите елементи е огромна – няколко милиона на cm2.
Когато тока се движи се създава една или друга посока на магнитния поток. Ако над домените се движи една намотка то в краищата на намотката се индуцира слаб ток и протича слаб електричен поток. Той се получава при преминаване от един домейн при обратно намагнетизиран домейн. Тази намотка всъщност е главата. Състои се от подковообразна структура, около която има тънък проводник.
 
Шпинделът е оста, около която се въртят дисковете. На всеки диск може да има до 2 работни повърхности. Към всяка работна повърхност има четяща/записваща глава. При твърдите плочи главите са летящи, т.е. профилът на главата е със специален радиус и при въртенето на диска плочата увлича газовите молекули под нея и в близост до главата се образува вятър, който при съприкосновението си с нея образува подемна сила, която отблъсква главата нагоре от плочата. От горе пък има пружина, която предпазва главата от прекалено издигане. Така винаги се поддържа дистанция от 1 – 2 микрометъра и няма триене, което позволява по-бързо въртене (не както при магнитните ленти).
 
Що се отнася до въртенето – най-бавните дискове са 2400 оборота. След това следват 3600-5400-7200-10000-15000 RPM.
Шпинделът винаги се върти с една и съща скорост при всички дискове. Щом се достигне тази нормална скорост (при стартиране) влиза и каретата. Ъгловата скорост на диска е една и съща, но линейната на различните писти е различна. Външните писти са с по-бърза линейна скорост, вътрешните – по-ниска. Оттук – секторите във външните писти са по-разредени, вътрешните – по-нагъсто. Отначало всички писти са имали един и същ брой сектори (еднакъв капацитет). На вътрешните писти има по-малко сектори. Броят сектори не е константен, но размерът на всеки един от тях е.
 
Дисковете могат да започнат обработка на информация само от началото на пистата. Когато искаме да прочетем 5-тии сектор винаги започваме от 1-ви докато стигнем 5-тии. Така достъпът до секторите е последователен. Между секторите в пистата има служебно разстояние и при висока скорост на въртене то нараства. Това е така за да може при последователно четене на сектори да не се подмине търсения сектор. Номерата на секторите се слагат логически последователно.
 
Има два начина да се избегне поставянето на голямо служебно разстояние между отделните сектори.