Разлика между версии на „Теорема на Болцано-Вайерщрас (за безкрайните редици)“

м
Правописни грешки
м
м (Правописни грешки)
Тогава обединението <math>\Omega = \cup U_x </math> е покритие на интервала <math>\left[ a;b \right]</math>. От теоремата на Хайне - Борел следва, че <math>\Omega</math> има крайно подпокритие <math>\Omega ^ \prime</math>, състоящо се от краен брой интервали, всеки от които съдържа само краен брой членове на <math>r</math>. Но <math>r</math> има безбройно много членове в интервала <math>\left[ a;b \right]</math>, което е противоречие и следователно <math>r</math> има точка на сгъстяване. С това теоремата е доказана.
 
Тази теорема е доказана от чехскиячешкия математик Болцано през 1817 г., а по-късно независимо от него е получена от Вайерщрас. Тя е една от основните теореми в математическия анализ.
 
 
108 034

редакции