Ултравиолетово излъчване: Разлика между версии

Изтрито е съдържание Добавено е съдържание
Редакция без резюме
Mihivit (беседа | приноси)
Ред 91:
Обикновеното [[стъкло]] е полупрозрачно за ''UVA'' и непрозрачно за по-късите вълни, докато [[кварцово стъкло|кварцовото стъкло]], в зависимост от качеството, може да бъде прозрачно дори за вакуумните дължини на вълната. През обикновеното прозоречно стъкло преминава около 90 % от светлината над 350&nbsp;nm, но над 90 % от светлината под&nbsp;300 nm се блокира.<ref>{{cite web | title = Soda Lime Glass Transmission Curve | url = http://www.sinclairmfg.com/datasheets/sodalimecurve.htm | lang = en}}</ref><ref>{{cite web | title = B270-Superwite Glass Transmission Curve | url = http://www.pgo-online.com/intl/katalog/curves/B270_kurve.html | lang = en}}</ref><ref>{{cite web | title = Selected Float Glass Transmission Curve | url = http://www.pgo-online.com/intl/katalog/curves/whitefl_kurve.html | lang = en}}</ref>
 
Началото на вакуумния диапазон, 200&nbsp;nm, се определя от факта, че под тази дължина на вълната обикновеният въздух е непрозрачен поради значителното [[абсорбция (електромагнетизъм)|поглъщане]]. За разлика от въздуха, чистият азот (с по-малко от 0,001 % кислород) е прозрачен и в диапазона 150-200&nbsp;nm, което има голяма практическа важност при производството на [[полупроводник|полупроводници]]. Ако се работи в газова среда без кислород се избягва нуждата от създаване на вакуум в оборудванетооборудввването.
 
Крайните ултравиолетови вълни се характеризират с промяна във физиката на взаимодействието им с [[вещество]]то: вълните, по-дълги от около 30&nbsp;nm, взаимодействат главно с [[електрон]]ите от валентната обвивка на [[атом]]а, а по-късите от 30&nbsp;nm - главно с атомното ядро и електроните от вътрешните обвивки. Горната граница на този диапазон се определя от изявената [[спектрална линия]] на [[хелий|He<sup>+</sup>]] при 30,4&nbsp;nm. Крайните ултравиолетови вълни се поглъщат от повечето известни материали, но е възможно да се създаде [[оптично покритие]], отразяващо до 50&nbsp;% от тях. Тази технология се използва при създаването на [[телескоп]]и за наблюдение на Слънцето, както и в областта на [[нанолитография]]та.