Разлика между версии на „Фигура на Лисажу“

м
Disambiguated: графикаГрафика (математика), форматиране: 9 интервала, тире (ползвайки Advisor)
м (→‎top: -, replaced: [точка] → [точка (математика)|] редактирано с AWB)
м (Disambiguated: графикаГрафика (математика), форматиране: 9 интервала, тире (ползвайки Advisor))
[[File:Lissajous.png|thumb|250px|Фигури на Лисажу]]
'''Фигура на Лисажу''' е [[крива]], която представлява [[геометрично място на точки|геометричното място]] на резултантното преместване на [[точка (математика)|точка]], в която се наслагват две или повече [[периодично движение|периодични движения]], най-често с една и съща [[честота]] и под [[прав ъгъл]].<ref>''Речник на научните термини'', Е.Б.Уваров, А. Айзакс, Изд. Петър Берон, 1992</ref>
 
Изразена формално, фигурата на Лисажу е [[Графика (математика)|графика]]та, отговаряща на системата параметрични уравнения
<center><math> x=A\sin(at+\delta),\quad y=B\sin(bt) </math>,</center>
която описва [[Наслагване на трептения|наслагващи се]] [[хармонично трептене|хармонични трептения]].
 
Как ще изглежда фигурата на Лисажу зависи в много голяма степен от съотношението a/b:
* Когато това съотношение е 1, фигурата е [[елипса]], със специални частни случаи:
** [[окръжност]] при A = B, δ = π/2 [[радиан]]а, и
** [[права|права линия]] при δ = 0.
* Друг прост частен случай на фигура на Лисажу е [[парабола]]та: при a/b = 2, δ = π/2.
* Другите съотношения водят до по-сложни криви, които са затворени само и единствено в случаите, когато съотношението a/b е [[рационално число]].
 
Тази фамилия криви е изследвана от [[Натаниъл Боудич]] през 1815 и по-късно, в подробности – от [[Жюл Лисажу]] през 1857 г. Приложение намира в области като [[физика]] и [[астрономия]].
 
<center><gallery caption = "Примери за фигури на Лисажу">
<div class="references-small"><references /></div>
 
== Външни препратки ==
{{Commonscat|Lissajous curves}}
* [http://mathworld.wolfram.com/LissajousCurve.html Фигурите на Лисажу], Wolfram [[MathWorld]]