Конично сечение: Разлика между версии

Изтрито е съдържание Добавено е съдържание
м унифициране - г.пр. --> г. пр.
м замяна с n-тире
Ред 6:
* '''[[елипса]]''' — затворена крива с два [[фокус (математика)|фокуса]]. Частен случай е [[окръжност]]та, която се получава при пресичане на прав кръгов конус с равнина, [[перпендикулярност|перпендикулярна]] на оста му.
* '''[[парабола]]''' — отворена крива с един фокус. Получава се при пресичане на конуса с равнина, [[успоредност|успоредна]] на образувателната му.
* '''[[хипербола]]''' отворена крива, състояща се от два клона, има два фокуса. Представлява сечение на двата ръкава на конуса с равнина, която не е успоредна на негова образувателна.
 
Думите „елипса“, „парабола“ и „хипербола“ произхождат от [[гръцки език]] и означават съответно „недостиг“ (έλλειψη), „прилагане“ (παραβαλη) и „излишък“ (ὑπερβολή). Въведени са от Аполоний във връзка с дефинираната от него процедура „прилагане“ за построяване на [[правоъгълник]] с дадена основа, равнолицев с друг даден правоъгълник.<ref>"Лексикон Математика", изд. Абагар, Холдинг, София, 1995</ref>
 
В случаите когато равнината минава през върха на коничната повърхнина, се наблюдават различни изродени случаи на конични сечения:
* [[права линия]] когато равнината допира коничната равнина и сечението на двете представлява образувателна на конуса.
* двойка пресечни прави когато равнината сече конуса под по-малък [[ъгъл]], от този между образувателната и оста на ротация.
* [[точка (математика)|точка]] когато равнината сече конуса под по-голям ъгъл.
 
== Аналитично представяне. Представяне като геометрично място на точки ==
Друг начин за дефиниране на коничните сечения е посредством точка и права.<ref>„Линейна алгебра и аналитична геометрия“, М. Гаврилов, Г. Станилов, Софтех, София, 1998</ref> Нека ''F'' е фиксирана точка в равнината, а ''d'' - права, неминаваща през ''F''. Нека ''М'' е произволна точка и за нея разгледаме разстоянията MF и MM' до правата d (където <math> \textstyle{M' \in d, MM' \perp d}</math>) и по-специално тяхното отношение: <math> \frac{ \mid MF \mid}{ \mid MM' \mid} = e </math>, наречено ''[[ексцентрицитет]]''.
 
Множеството от точки М в равнината, за които така определеният ексцентрицитет е [[константа|постоянно число]], се нарича ''конично сечение'', точка F ''фокус'', а правата ''d'' ''директриса''.
 
Нека е въведена [[декартова координатна система]] <math>O \xi \eta </math>, такава че <math>O \eta</math> съвпада с правата ''d'', оста <math>O \xi </math> минава през ''F''. В така подбраната координатна система правата d има уравнение <math>\xi = 0</math>, а F има координати (p, 0), където p е разстоянието от фокуса F до директрисата d. Така от дефиниционното равенство <math> \frac{ \mid MF \mid}{ \mid MM' \mid} = e </math> следва, че <math>\displaystyle{(\xi - p)^2 + \eta^2 = e^2\xi^2}</math>, което след преобразувание приема вида:
: <math>\displaystyle{(1-e^2)\xi^2 + \eta^2 - 2p\xi + p^2 = 0}</math>, което е уравнение от втора степен на двете неизвестни <math>\xi, \eta</math>.
 
Двата основни случая се определят в зависимост от това дали коефициентът пред <math>\xi^2</math> се [[нула|нулира]] или не, т.е. в зависимост от това дали ексцентрицитетът е равен на или различен от 1.
# При <math> e = 1 </math>, уравнението приема вида <math>\displaystyle{\eta^2 - 2p\xi + p^2 = 0}</math>, което след полагането <math> \displaystyle{\xi = x + \frac{p}{2}, \eta = y}</math> а оттам след обратно преобразувание се получава и каноничното уравнение на параболата: <math> \displaystyle{y^2 = 2px}</math> <br /> Оттук и дефиницията на параболата като геометричното място на точки, които са равноотдалечени от точка и права.<ref name="kamenarov">''Справочник по висша математика'', Георги Каменаров, Издателство „Техника“, 1994</ref>
# Нека <math> e \ne 1</math>. С полагането на <math> \displaystyle{\xi = x + \alpha, \eta = y}</math> се прави [[транслация]] на координатната система, където <math>\alpha </math> е неизвестната величина, която подлежи на определяне. След заместването и елементарни преобразувания, следва че <math>\displaystyle{2 \alpha(1 - e^2) - 2p = 0}</math>, оттук <math>\alpha = \frac{p}{1 - e^2}</math> и <math>(1-e^2)x^2 + y^2 = \frac{p^2e^2}{1 - e^2}</math>. Оттук насетне има два случая, в зависимост от ''е''.
## При <math>e < 1, 1 - e^2 > 0 </math> и като разделим на <math>\frac{p^2e^2}{1 - e^2}</math>, при полагане на <math>a = \frac{pe}{1 - e^2}, b = \frac{pe}{\sqrt{1 - e^2}}</math> получаваме, че <math>\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1</math>, което се нарича ''канонично уравнение на елипсата''. <br /> Елипсата се определя и като геометричното място от точки, за които сумата от разстоянията до две предварително фиксирани точки е постоянно число (бифокална дефиниция).<ref name="kamenarov" />
## При <math>e > 1, \frac{p^2e^2}{e^2 - 1} > 0 </math> и като разделим на <math>\frac{p^2e^2}{e^2 - 1}</math>, при полагане на <math>a = \frac{pe}{e^2 - 1}, b = \frac{pe}{\sqrt{e^2 - 1}}</math> получаваме, че <math>\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1</math>, което се нарича ''канонично уравнение на хиперболата''. <br /> Хиперболата се определя и като геометричното място от точки, за които абсолютната стойност на разликата от разстоянията до две предварително фиксирани точки е постоянно число (бифокална дефиниция). <ref name="kamenarov" />
 
И така, трите вида конични сечения се получават в зависимост от стойността на ексцентрицитета, като:
Ред 48:
== Методи и инструменти за чертане ==
{{Раздел-мъниче}}
Първите инструменти за изчертаване на елипси вероятно са изобретени от [[Прокъл (философ)|Прокъл]] и [[Исидор Милетски]] през 5 - 4 век пр.н.е.<ref name="matterm" /> Представлявали са проста конструкция с конец, която работи на принципа на бифокалната дефиниция на елипсата.
 
Друг метод за изчертаване на елипси е наречен по името на [[Архимед]]. При него се взима отсечка АС, върху която се отбелязва точка В. Когато точките А и В се движат съответно по две пресичащи се прави оси, „пишещият“ елемент в точка С изчертава елипса.
 
== Приложения ==
Приложение коничните сечения имат в [[астрономия]]та: те участват в математическия апарат, с който [[Кеплер]] и [[Исак Нютон]] описват движението на планетите. Кеплер формулира [[Закони на Кеплер|закона]], че [[планета|планетите]] се движат по елипсовидна [[орбита]], в единия фокус на която се намира [[Слънце]]то. По-общо, всички [[небесно тяло|небесни тела]], които се намират под въздействието на слънчевата [[гравитация]] и върху които не оказват влияние други [[сила (физика)|сили]], се движат по орбита с форма на някое конично сечение, за което Слънцето е фокус. Непериодичните [[комета|комети]] се движат по парабола и хипербола, а периодичните по силно издължени елипси.<ref>{{Цитат уеб|уеб_адрес=http://planetmath.org/encyclopedia/DandelinSphere.html |заглавие=Информация за коничните сечения |достъп_дата=17/05/2007 |автор= |съавтори= |дата= |формат= |издател=PlanetMath.org |език=en}}</ref>
 
== Източници ==