Разлика между версии на „Географска ширина“

редакция без резюме
м
[[imageФайл:Grosskreis.jpg|thumbмини|Екваторът и географските ширини са във виолетов цвят.]]
{{без източници}}
'''Географската ширина''' описва положението на дадено място северно (''северна ширина'') или южно (''южна ширина'') от [[Екваторекватор]]а. Измерва се в ъгли от 0° на екватора до 90° (на север) и от -90° до 0° (юг) на [[Географски полюс|полюсите]]. Успоредните на екватора линии се наричат [[паралел]]и. Географската ширина се използва заедно с [[Географска дължина|географската дължина]] за определяне на точното местоположение на обекти върху земната повърхност.
[[image:Grosskreis.jpg|thumb|Екваторът и географските ширини са във виолетов цвят]]
 
'''Географската ширина''' описва положението на дадено място северно (''северна ширина'') или южно (''южна ширина'') от [[Екватор]]а. Измерва се в ъгли от 0° на екватора до 90° (на север) и от -90° до 0° (юг) на [[Географски полюс|полюсите]].
== Географска ширина на сфера ==
[[файл:latitude and longitude graticule on a sphere.svg|мини|upright=0.9|Изглед на Земята, показващ как географската ширина (<math>\phi</math>) и географската дължина (<math>\lambda</math>) се определят върху сфера.]]
 
=== Мрежа на сферата ===
Мрежата се съставя чрез линиите на постоянна географска ширина и дължина, които се построяват спрямо оста на въртене на Земята. Основните отправни точки са [[Географски полюс|полюсите]], при които оста на въртене на Земята пресича повърхността. Равнината, в която е разположена оста на въртене, пресича повърхността при меридианите, а ъгълът между коя да е равнина на меридиан и тази на Гринуич ([[началния меридиан]]) определя геогрфаската дължина. Екваторът има ширина от 0°, докато двата полюса са с ширина съответно от 90° N (северен) и 90° S (южен). Географската ширина на произволна точка е ъгълът между екваториалната равнина и [[нормала]]та към повърхността в тази точка – нормалата към повърхността на сферата се чертае по дължина на [[радиус-вектор]]а.
 
Ширината, определяна по този начин за сфера, често се нарича сферична ширина, за да се избегне двусмислие с геодезичната ширина и спомагателната ширина.
 
=== Известни географски ширини на Земята ===
[[Файл:December solstice geometry.svg|мини|upright=1.35|Ориентацията на Земята по време на зимното слънцестоене.]]
Освен екватора, има още четири паралела, които са от особено значение:
 
:{| class="wikitable" border="1"
| [[Северен полярен кръг]] || 66° 34′ (66.57°) N
|-
| [[Тропик на рака]] ||23° 26′ (23.43°) N
|-
| [[Тропик на козирога]] || 23° 26′ (23.43°) S
|-
| [[Южен полярен кръг]] || 66° 34′ (66.57°) S
|}
 
Равнината на земната орбита около Слънцето се нарича [[еклиптика]], а равнината, перпендикулярна на оста на въртене на Земята, еваториалната равнина. Ъгълът между еклиптиката и екваториалната равнина образува [[Наклон на оста (астрономия)|наклон на оста]] и често се обозначава с {{mvar|i}}. Географската ширина на тропичните кръгове е равен на ''i'', а ширината на полярните кръгове е 90° – ''i''. Оста на въртене на Земята се изменя бавно с течение на времето, а използваните стойности тук касаят текущата епоха.
 
Фигурата вдясно показва геометрията на напречен разрез на равнина, перпендикулярна на еклиптиката и през центъра на Земята, докато Слънцето е в декемврийското [[слънцестоене]] над точка от тропика на Козирога. Южните полярни географски ширини под Южния полярен кръг са огряни от слънцето, докато северните географски ширини над Северния полярен кръг са потънали в мрак. Ситуацията се обръща по време на юнското слънцестоене, когато Слънцето е над тропика на рака. Само при географски ширини между двата тропика е възможно Слънцето да застане точно отгоре (в [[зенит]]).
 
При [[Картографска проекция|картографските проекции]] няма универсално правилно относно изобразяването на меридианите и паралелите. Примерите по-долу показват главните паралели върху често използваната [[Меркаторова проекция]] и трансверсалния ѝ вариант. При първата паралелите са хоризонтални, а маридианите са вертикални, докато при втората няма точна връзка между паралелите и меридианите – и двете са сложни криви.
 
{| style="text-align:left" style="margin: 1em auto 1em auto"
|-valign=top
! width="1%" |
! width="36%"|Нормална Меркаторова проекция
! width="3%"|
! width="36%" |Трансверсална Меркаторова проекция
! width="1%" |
|-valign=top
|
| align="center" width="200px" | [[Файл:MercNormSph enhanced.png|center|200п]]
|
\
| align="center" width="200px" | [[Файл:MercTranSph enhanced.png|center|200п]]
|}
 
=== Меридионално разстояние върху сфера ===
Върху сфера нормалата преминава през центъра ѝ и следователно географската ширина ({{mvar|φ}}) е равна на ъгъла, образуван в центъра от меридионалната дъга от екватора до изследваната точка. Ако меридионалното разстояние се обозначи с {{math|''m''(''φ'')}}, тогава
 
:<math> m(\phi)=\frac{\pi}{180^\circ}R\phi_\mathrm{deg} = R\phi_\mathrm{rad}</math>
 
където {{mvar|R}} е средният [[земен радиус]]. {{mvar|R}} е равен на 6 371 km. Не е подходяща по-голяма точност за {{mvar|R}}, тъй като резултатите с голяма точност биха направили използването на елипсоиден модел неизбежно. С тази стойност за {{mvar|R}}, меридионалното разстояние на 1 градус географска ширина върху сфера е 111,2 km. Разстоянието на 1 минута географска ширина е 1,853 km, а разстоянието на 1 секунда географска ширина е 30,8 m.
 
== Географска ширина на елипсоид ==
=== Елиспоиди ===
През 1687 г. [[Исак Нютон]] публикува труда ''[[Математически начала на натурфилософията]]'', в който той доказва, че въртящо се флуидно тяло със собствена гравитация в равновесие приема формата на сплеснат [[елипсоид]].<ref name=newton>{{cite book|first=Isaac |last=Newton|title=Philosophiæ Naturalis Principia Mathematica|chapter=Book III Proposition XIX Problem III|page= 407|url=https://archive.org/details/100878576}}</ref> Резултатът на Нютон е потвърден от геодезичните измервания през 18 век. Сплеснатият елипсоид представлява триизмерна повърхност, създадена от въртенето на елипса около късата си ос.
 
Много различни отправни елипсоиди са използвани в историята на [[геодезия]]та. Преди сателитите, те са разделяни, за да се получи добро напасване на [[геоид]]а върху ограничена площ, но с изобретяването на [[GPS]] става практика да се използват отправни елипсоиди (WGS84) с център в масовия център на Земята. Тези геоцентрични елипсоиди обикновено съвпадат до 100 m с геоида. Тъй като географската ширина се определя по отношение на елипсоид, позицията на всяка точка е различка върху всеки елипсоид – не е възможно с точност да се определи географската ширина и дължина на географски обект, без да се уточни използвания елипсоид. Много карти, поддържани от национални служби, се основават на по-стари елипсоиди, така че е нужно да се знае как стойностите на ширината и дължината се преобразуват от един елипсоид към друг. GPS приемниците включват софтуер, който преобразува [[датум]]и, свързвайки WGS84 с местния отправен елипсоид.
 
=== Геометрия на елипсоида ===
[[Файл:Ellipsoid parametric euler mono.svg|мини|Сфера с радиус ''a'' се свива до сплеснат елипоид при завъртане.]]
 
Формата на елипсоид при завъртане се определя от формата на елипсата, която се върти около късата ѝ ос. Нужни са два параметъра: единият е постоянния екваториален радиус, който е полуголямата ос {{mvar|a}}, а другият обикновено е (1) полярният радиус на полумалката ос {{mvar|b}}, (2) първата [[сплеснатост]] {{mvar|f}} или (3) [[ексцентрицитет]]ът {{mvar|e}}. Тези параметри са свързани чрез следните връзки:
 
:<math>f=\frac{a-b}{a}, \qquad e^2=2f-f^2,\qquad b=a(1-f)=a\sqrt{1-e^2}\,.</math>
 
Много други параметри се появяват в геодезията, геофизиката и картографските проекции, но всичките те могат да се изразят спрямо един или два члена от множеството {{mvar|a}}, {{mvar|b}}, {{mvar|f}} и {{mvar|e}}. Както {{mvar|f}}, така и {{mvar|e}} са малки и често се появяват в разширени редове при изчисления – те са от порядъка на {{sfrac|1|300}} и 0,08 съответно. Отправните елипсоиди обикновено се определят от полуголямата ос и обратната сплеснатост {{math|{{sfrac|1|''f''}}}}. Например, определящите стойности за елипсоида [[WGS84]], използван от всички GPS устройства, са:<ref>{{cite web |url=http://earth-info.nga.mil/GandG/publications/tr8350.2/tr8350_2.htmlNIMA |publisher=National Geospatial-Intelligence Agency publication |title=TR8350.2 |page=3 – 1 }}</ref>
 
* {{mvar|a}} (екваториален радиус): 6 378 137 m точно
* {{math|{{sfrac|1|''f''}}}} (обратна сплеснатост): 298,257223563 точно
от които се извеждат
* {{mvar|b}} (полярен радиус): 6 356 752,3142 m
* {{math|''e''<sup>2</sup>}} (ексцентрицитет на квадрат): 0,00669437999014
 
Разликата между полуголямата и полумалката оси е около 21 km и като част от полуголямата ос се развнява на сплеснатостта. На компютърен екран, тя може да бъде изобразена с 300 x 299 пиксела. Това би било трудно различимо от сфера с размери 300 x 300, така че илюстрациите обикновено преувеличават сплеснатостта.
 
=== Геодезични и геоцентрични географски ширини ===
[[Файл:latitude and longitude graticule on an ellipsoid.svg|мини|upright=0.9|Дефиницията на географска ширина ({{mvar|φ}}) и дължина ({{mvar|λ}}) върху елипсоид. Нормалата към повърхността не преминава през центъра, освен при екватора и полюсите.]]
 
Мрежата на елипсоида се съставя точно по същия начин, както върху сфера. Нормалата в точка от повърхността на елипсоид не преминава през центъра му, освен ако точката не лежи на екватора или на някой от полюсите, но дефиницията на географската ширина остава непроменена като ъгълът между нормалата и екваториалната равнина. Терминологията на географската ширина трябва допълнително да се уточни, за да се разграничат:
 
* ''Геодезична ширина'' – ъгълът между нормалата и екваториалната равнина. Често използвана нотация е {{mvar|φ}}. Това е определението, което се подразбира, когато се използва думата ''географска ширина'' без квалификации.
* ''Геоцентрична ширина'' – ъгълът между радиуса (от центъра до точка на повърхността) и екваториалната равнина. Няма стандатна нотация (използват се {{mvar|θ}}, {{mvar|ψ}}, {{mvar|q}}, {{mvar|φ′}}, {{math|''φ''<sub>c</sub>}}, {{math|''φ''<sub>g</sub>}}).
* ''Сферична ширина'' – ъгълът между нормалата към сферична отправна повърхност и екваториалната равнина.
 
Важността от определянето на отправен датум може да се илюстрира чрез прост пример. Върху отправната елиспоида на WGS84, центърът на [[Айфеловата кула]] има геодезични координати 48°&nbsp;51′&nbsp;29″&nbsp;N, 2°&nbsp;17′&nbsp;40″&nbsp;E. Същите координати, но с датум ED50, определят точка на земята, която е на 140 m от кулата. Така е възможно да се изнамерят различни стойности за географската ширина на кулата, а отправният елипсоид рядко се упоменава.
 
== Вижте също ==
* [[Географски координати]]
* [[Географска дължина]]
 
== Източници ==
<references/>
 
{{гео-мъниче}}
[[Категория:Географска ширина| ]]