Разлика между версии на „Правилен многоъгълник“
→Построение на правилен многоъгълник
(tab) |
|||
Съществуват неограничен брой построими правилни многоъгълници, като са известни само 31 с [[Четност|нечетен]] брой страни. Изчерпателното решение на задачата за построение на правилен ''n''-ъгълник зависи от намирането на доказателство за броя на простите [[Число на Ферма|числа на Ферма]].
Задачата е идентична с разделянето на окръжността на ''n'' равни части. [[Евклид]] е разгледал построяването на правилен многоъгълник в IV книга на своите „Елементи“ и решава задачата за ''n'' = 3, 4, 5, 6, 15. <ref>Евклид, ''Елементи'', кн.4., София: Наука и Изкуство, 1972.</ref>Той посочва първия критерий за построимост на правилен многоъгълник: aко вече е построен правилен <math>2^
През Средновековието математиката не постига напредък в тази област. Едва през 1796 г. [[Гаус]] доказва, че ако броят на страните на правилния многоъгълник е [[просто число на Ферма]] (известни са само пет: 3, 5, 17, 257 и 65 537), той може да бъде [[Построения с линийка и пергел|построен с линийка и пергел]]. Оттук следва, че правилен многоъгълник може да бъде построен, ако броят на страните му е равен на
|