Безкраен ред се нарича сумата на безкрайно много членове които следват дадено правило. Изразява се чрез формулата:

където,

e сумата на членовете;

e член от редът.

СвойстваРедактиране

Частични редовеРедактиране

Частични редове са сумата на   на брой членове от безкрайния ред. Изразява се чрез формулата:

 

Единствената разлика в този случай е, че се сумират фиксиран брой членове, а не безкрайно много.

СходимостРедактиране

Ако един ред   приближава дадено число   като се увеличава броя на членове в реда се казва, че реда   се схожда към  . В противен случай не може да бъде дадена стойност на   и се казва, че реда е несходим.

Проверки за клонене на редовеРедактиране

В много случаи е полезно да разберем дали един безкраен ред клони към дадена стойност или не. Въпреки че не винаги е възможно да се разбере дали един ред клони към дадена стойност или не, обикновено е истина, че ако редът   клони към дадена стойност, то тогава с нарастване на    ще се приближава към 0. Или изразено чрез граници:

 

Друго свойство на редовете е, че добавянето или премахването на даден брой членове от реда няма ефект върху свойството му да клони към дадена стойност. Също така ако всички членове от даден безкраен ред са положителни то тогава частичната сума на реда ще има горна граница  към която ще клони или ще расте без горна граница.

ПримериРедактиране

Който не клониРедактиране

 

В този случай реда расте с всеки добавен член и никога не клони, тоест расте без горна граница.

Който клониРедактиране

 

Този ред клони към 2, тъй като първият член е равен на 1, а сумата на следващите приближава 1 тъй като всеки от тях е 2 пъти по-малък от следващия.