Вдлъбната функия е вид нелинейна функция в математиката.

Определение

редактиране

Нека в някакъв интервал (x1;x2) имаме дефинирана непрекъсната функция y(x), представена с крива, еднопосочно „огъната“ условно само „надолу“. Нека А и Б са стойностите на тази функция съответно в точките x1 и x2. Тогава, ако графиката на y(x) се намира над АБ, функцията в вдлъбната.

 

Строгото определение за вдлъбната и изпъкнала функция се формира така:

Вдлъбната функция

редактиране

Функцията y(x) се нарича вдлъбната в даден интервал, ако за всеки две точки x1 и x2 от него е изпълнено неравенството:

 .

Прието е линейната функция да бъде едновременно изпъкнала и вдлъбната. Поради това знакът за равенство присъства в горните дефиниции.

Свойства

редактиране
  • Ако функцията y(x) притежава втора производна, която е отрицателна (f′′(x)<0) в дадения интервал, то функцията е вдлъбната в този интервал.
  • Точките, отделящи изпъкнала от вдлъбната част на графиката на функция, се наричат инфлексни точки за графиката на функцията.

Вижте също

редактиране