Разлика между версии на „Трапец“

3938 байта изтрити ,  преди 3 години
Заместване на съдържанието на страницата с „'''Трапецът''' е равнинна (измерение|Д...“
м (Премахнати редакции на 87.126.170.248 (б.), към версия на Ah3kal)
(Заместване на съдържанието на страницата с „'''Трапецът''' е равнинна (измерение|Д...“)
[[Картинка:Trapezoid2.png|мини|трапец]]
'''Трапецът''' е [[равнина (математика)|равнинна]] ([[измерение|Двуизмерна]]) [[геометрия|геометрична]] фигура. Дефинира се като [[четириъгълник]], в който две срещуположни страни са [[успореден|успоредни]].
 
Успоредните страни се наричат '''основи''' на трапеца — долна и горна. Страните, свързващи крайните точки на основите на трапеца (без да се пресичат във вътрешността му), се наричат '''бедра'''. Отсечките, свързващи срещуположните ъгли, се наричат '''диагонали'''. Отсечката, свързваща средите на бедрата на трапеца, се нарича '''средна основа'''.
 
==Видове трапеци ==
* Трапец, чиито бедрa са равни, се нарича '''равнобедрен'''.
* Трапец, един от ъглите на който е прав, се нарича '''правоъгълен'''
 
==Свойства==
* Средната основа на трапеца е успоредна на основите и е равна на полусбора им.
* '''Обобщена теорема на Талес''': Успоредните прави, пресичащи страните на ъгъл, отсичат от страните на ъгъла пропорционални отсечки.
* При равнобедрения трапец ъглите при основата са равни.
* При равнобедрения трапец диагоналите са равни.
* Около всеки равнобедрен трапец може да се опише окръжност.
* Ако сборът от дължините на основите на трапеца е равен на сбора от дължините на бедрата, то в него може да се впише окръжност.
* В трапеца средите на основите и пресечните точки на диагоналите и на продълженията на бедрата лежат на една права.
* Сборът от големините на ъглите, прилежащи на бедрата, е 180°.
 
== Лице на трапец ==
Ако '''а''' и '''b''' са основите на трапец и '''h''' е височината му, лицето на трапеца се изчислява по формулата
 
:<math>S=\frac{1}{2}(a+b)h=0,5.(a+b)h=\frac{a+b}{2}h</math>
 
Изразът <math>\frac{a + b}{2}</math> е дължината на средната основа на трапеца и поради това лицето може да се разглежда като произведение от дължините на средната отсечка и на височината.
 
Ако са известни дължините на четирите страни на трапеца '''a''', '''b''', '''c''', '''d''' ('''a''' е дължината на основата), неговото лице се намира по формулата
 
<math>A=\frac{a+c}{4(a-c)}\sqrt{(a+b-c+d)(a-b-c+d)(a+b-c-d)(-a+b+c+d)}.</math>
 
Тази формула не работи, ако основите '''а''' и '''с''' са равни, тъй като ще имаме деление с нула. В този случай трапецът е успоредник и се използва друга формула.
 
Ако по-малката основа е много близо до нула, формулата се превръща в [[Херонова формула|Хероновата формула]].
 
''Частен случай''. Площта на равнобедрен трапец с ъгъл при основата равен на 30<sup>0</sup> и радиус на вписаната окръжност '''<math>r</math>''', ще бъде равна на:
 
: '''<math>S=8r^2</math>'''
 
[[Категория:Четириъгълници]]
 
[[he:טרפז]
Анонимен потребител