Класическа физика: Разлика между версии

Изтрито е съдържание Добавено е съдържание
Редакция без резюме
Ред 17:
== Сравнение с модерната физика ==
За разлика от класическата физика, [[Модерна физика|модерната физика]] е малко по-общ термин, който може да се отнася или само до [[Квантова физика|квантовата физика]], или по-общо до постиженията на физиката от 20 и 21 век. Модерната физика включва квантовата теория и теорията на относителността, където е приложимо.
<!--
A physical system can be described by classical physics when it satisfies conditions such that the laws of classical physics are approximately valid. In practice, physical objects ranging from those larger than [[atom]]s and [[molecule]]s, to objects in the macroscopic and astronomical realm, can be well-described (understood) with [[classical mechanics]]. Beginning at the atomic level and lower, the laws of classical physics break down and generally do not provide a correct description of nature. Electromagnetic fields and forces can be described well by classical electrodynamics at length scales and field strengths large enough that quantum mechanical effects are negligible. Unlike quantum physics, classical physics is generally characterized by the principle of complete [[Scientific determinism|determinism]], although deterministic interpretations of quantum mechanics do exist.
 
Една физическа система може да бъде описана от класическата физика, когато в нея са валидни класическите закони. На практика всички физически обекти с макроскопична големина, т.е. надвишаваща размерите на [[атом]]ите и [[Молекула|молекулите]] и достигаща до астрономически размери, могат да бъдат описани от класическата физика. С преминаване на границите на атома надолу обаче законите на класическата физика не успяват да опишат правилно явленията. Електромагнитните полета и сили се описват добре от класическата електродинамика при размери и сила на полето, при които квантовите ефекти са пренебрежимо малки. За разлика от квантовата физика, класическата физика се характеризира най-общо с валидност на принципа за [[научен детерминизъм]], макар че съществуват детерминистични интерпретации а на квантовата механика.
 
<!--
From the point of view of classical physics as being non-relativistic physics, the predictions of general and special relativity are significantly different than those of classical theories, particularly concerning the passage of time, the geometry of space, the motion of bodies in free fall, and the propagation of light. Traditionally, light was reconciled with classical mechanics by assuming the existence of a stationary medium through which light propagated, the [[luminiferous aether]], which was later shown not to exist.
 
Mathematically, classical physics equations are those in which [[Planck's constant]] does not appear. According to the [[correspondence principle]] and [[Ehrenfest's theorem]], as a system becomes larger or more massive the classical dynamics tends to emerge, with some exceptions, such as [[superfluidity]]. This is why we can usually ignore quantum mechanics when dealing with everyday objects and the classical description will suffice. However, one of the most vigorous on-going fields of research in physics is [[Decoherence#Loss of interference and the transition from quantum to classical|classical-quantum correspondence]]. This field of research is concerned with the discovery of how the laws of quantum physics give rise to classical physics found at the limit of the large scales of the classical level.
 
== Компютърно моделиране и изчисления на ръка ==
== Computer modeling and manual calculation, modern and classic comparison ==
[[File:The two physic theories without refutation at the moment.jpg|thumb|350px|A computer model would use quantum theory and relativistic theory only]]
Today a computer performs millions of arithmetic operations in seconds to solve a classical [[differential equation]], while Newton (one of the fathers of the differential calculus) would take hours to solve the same equation by manual calculation, even if he were the discoverer of that particular equation.