В геометрията две фигури са еднакви ако те имат едни и същи размери и форма.

Еднаквост на триъгълнициРедактиране

Еднаквостта на триъгълници е понятие от геометрията. Два триъгълника са еднакви, ако всички елементи от единия са равни на всички елементи от втория.

 
Пример за еднаквост. Двата триъгълника вляво са еднакви, третият им е подобен, а четвъртият не е нито едното от двете.
 
Всички триъгълници на триъгълното пано са еднакви

Първи признакРедактиране


Ако две страни и ъгъл между тях на един триъгълник са съответно равни на две страни и ъгъл между тях от друг триъгълник, то двата триъгълника са еднакви.

Втори признакРедактиране


Ако страна и двата прилежащи на нея ъгли от един триъгълник са съответно равни на страна и двата прилежащи на нея ъгли от друг триъгълник, то двата триъгълника са еднакви.

Втори обобщен: Ако страна и два ъгъла от един триъгълник са съответно равни на страна и два ъгъла от друг триъгълник, то двата триъгълника са еднакви (ако страните са еднакво разположни спрямо ъглите)

Трети признакРедактиране


Ако страните на един триъгълник са съответно равни на страните от друг триъгълник, то двата триъгълника са еднакви.


Четвърти признакРедактиране


Ако две страни и ъгъл срещу по-голямата от един триъгълник са съответно равни на две страни и ъгъл срещу по-голямата от друг триъгълник, то двата триъгълника са еднакви.

От Четвъртия признак за еднаквост следва Признакът за еднаквост на правоъгълни триъгълници: Ако хипотенуза и катет от един триъгълник са съответно равни на хипотенуза и катет от друг триъгълник, то двата триъгълника са еднакви.

Вижте същоРедактиране