Охлюв на Паскал е равнинна алгебрична крива от четвърти ред, която се задава с полярно уравнение и декартово уравнение .

Кривата е симетрична спрямо абсцисата. В началото на координатната система точката от кривата е особена:

  • изолирана точка при ; и две симетрично разположени инфлексни точки.
  • рогова точка от първи род при : тогава охлювът на Паскал се изражда в кардиоида.
  • двойна точка при : кривата се самопресича и има примка, нарича се трисектриса.

Охлювът на Паскал може да се построи геометрично по следния начин: дадена е окръжност и точка Р (без значение къде спрямо окръжността). Последователно се изчертават всички окръжности с центрове точки от окръжността, такива че минават през Р. Обвивката на тази фамилия окръжности е охлювът на Паскал. Кардиоидата се получава когато Р принадлежи на началната окръжност, а трисектриса с примка – когато Р е външна за окръжността.

Площта, ограничена от охлюва на Паскал, е , а дължината на кривата се изразява с елиптичен интеграл от втори род.

Кривата е обстойно изследвана от Етиен Паскал, баща на математика и философ Блез Паскал. Преди него е разглеждана и от немския ренесансов художник Албрехт Дюрер, в неговия труд „Underweysung der Messung“ (1525). Наречена е „охлюв на Паскал“ по предложение на Жил дьо Робервал.

Частни случаи на охлюва на Паскал: вдлъбнат охлюв, кардиоида и трисектриса

Източници

редактиране
  • „Математически термини“, Н.В. Александрова, ДИ Наука и изкуство, София, 1984
  • „The Penguin Dictionary of Mathematics“, John Daintith, R.D. Nelson, Penguin Books, 1989

Външни препратки

редактиране