В геометрията, хипоциклоида е равнинна крива, която се дефинира като геометричното място на фиксирана точка от окръжност, която се търкаля по вътрешната страна на друга окръжност, наречена направляваща, с радиус по-голям от радиуса на първата.

Конструкция на хипоциклоида

Уравнение

редактиране

Нека търкалящата се окръжност има радиус r, а направляващата окръжност – R. Тогава параметричните уравнения на кривата се задават с:

 ,

където   е ъгълът образуван от абсцисната ос и правата минаваща през центровете на двете окръжности.

Нека представим R във вида R = kr. Тогава:

Връзка с други криви
  • Хипоциклоидата е частен случай на хипотрохоида, при която фиксираната точка принадлежи на окръжността.
  • Хипоциклоидата с четири рогови точки е известна като астроида.
  • Еволютата на хипоциклоидата е нейна увеличена версия, а инволютата ѝ – нейна умалена версия.

Наименованието идва от гръцки, съставено е от "„, „под“ и “", „кръгообразен“. Първата циклоида е разгледана от Албрехт Дюрер в „Underweysung der Messung mit dem Zirkel und Rychtscheyd“ („Наставление за измерването с пергел и линийка“, 1525). Филип де Лаир извършва първото систематично изследване на хипоциклоидите и епициклоидите, като намира квадратурите им, извършва ректификации и построения на допирателните. По-късно с тези криви се занимават и Леонард Ойлер, Жозеф Алфред Сере, Гаспар Монж и други.

Вижте също

редактиране

Източници

редактиране
  • „The Penguin Dictionary of Mathematics“, John Daintith, R.D. Nelson, Penguin Books, 1989
  • „Лексикон Математика“, Георги Симитчиев, Георги Чобанов, Иван Чобанов, ИК Абагар, София, 1995, ISBN 954-584-146-Х
  • „Математически енциклопедичен речник“, В. Гелерт, Х. Кестнер, З. Нойбер, ДИ Наука и изкуство, София, 1983

Външни препратки

редактиране