Отваря главното меню

Антена

Метално съоръжение за излъчване и приемане на радиовълни.
Емблема за пояснителна страница Тази статия е за радиотехническото устройство. За анатомичния орган вижте антена (анатомия).

Телевизионна кула с антени на „Копитото“-Витоша

Антената е радиотехническо устройство за преобразуване на електромагнитни вълни в електрически ток и обратно, което се използва за предаване и приемане на сигнали. Формата, размерите и конструкцията на антените са разнообразни и зависят от дължината на вълната на излъчваните и приеманите сигнали и от предназначението на антената. Най-общо антената може да е изпълнена като отрязък от метален проводник или комбинация от такива проводници, метални рупори, отразяващи метални огледала с различна форма, вълноводи с метални стени и коаксиални линии, в които са изрязани процепи и други.

Антени на радио- и телевизионен предавател на III етаж на Айфеловата кула в Париж, гледани от северната страна от Трокадеро. Кулата е осветена в синьо, за да отпразнува френското председателство на Съвета на ЕС.

Ако антената се постави в електромагнитно поле, то индуцира между контактите ѝ електродвижеща сила и в нея протича променлив ток. Затова в най-общия случай антената е пасивно устройство. Всяка пасивна антена може да работи в режими на предаване и приемане, в които има едни и същи характеристики и параметри. Ако към нея непосредствено е включено активно устройство като елемент на предавател или приемник, получава се активна антена, която е само предавателна или приемна и няма обратими свойства. [1]

Диполни антени в базови станции 136 – 174 MHz.

Характеристики на антенитеРедактиране

Антената се характеризира с насочени, фазови и поляризационни свойства. В съответствие с това основните характеристики на антените са:[1]

  • Характеристика на насоченост (ХН). Това е функция, която определя изменението на амплитудата на напрегнатостта на полето, създавано от антената, в равно отдалечени точки от излъчвателя във всички посоки, т.е. по повърхността на сфера с център излъчвателя. Тъй като на различно разстояние от излъчвателя (различен радиус на сферата) амплитудата на полето е различна, използва се нормирана ХН – всички стойности на измереното поле се разделят на максималната. Така стойностите на нормираната ХН не надвишават единица.

Графичното изображение на ХН се нарича диаграма на насоченост (ДН). В пространството тя представлява тримерно изображение. Двете взаимно перпендикулярни сечения на това пространствено тяло представляват ДН в хоризонтална и вертикална равнина. Тя може да се изобразява:

  1. в полярна координатна система: ъгъл, определящ посоката на наблюдение и радиус-вектор, определящ амплитудата на полето или мощността в тази посока;
  2. в правоъгълна координатна система: – по абцисната ос – ъгълът, определящ посоката на наблюдение, а по ординатната (в линеен или логаритмичен мащаб) – амплитудата на полето или мощността в тази посока.

Видове ДН – тороидална, игловидна, ветрилообразна (веерна), със специален профил (косекансна)

  • Фазова характеристика (съответно фазова диаграма)
  • Поляризационна характеристика ПХ (съответно поляризационна диаграма ПД). Това е характеристиката, която показва закона на изменение големината и посоката на вектора на напрегнатостта на електрическото поле Е за един период на електромагнитното колебание.
 
Диаграма на насоченост на антена в полярна координатна система и параметри: ширина на ДН, D, μ
 
Анимация на излъчване на радиовълни от вертикален симетричен полувълнов вибратор, показваща линиите на електричното поле. Антената се захранва в средата от предавател с променлив ток, изобразено чрез смяна на полярността в двата края на дипола чрез знаците (+) положителна и () отрицателна.

Параметри на антенитеРедактиране

  • Входно съпротивление (входен импеданс): Zвх = Rвх + jXвх
  • Коефициент на стояща вълна: КСВ (коефициент на бягаща вълна КБВ = 1/КСВ)
  • Съпротивление на излъчване: Rи = Pи / I2
  • Съпротивление на загубите: Rз = Pз / I2
  • Мощност на излъчване: Pи = RиI2
  • Мощност на загубите: Pз = RзI2
  • Пълна мощност: Ра = Pи + Pи
  • Коефициент на полезно действие: η=Pиа
  • Коефициент на насочено действие (насоченост): D
  • Ширина на ДН в хоризонтална и вертикална равнина: (2φ)°0,5,(2θ)°0,5
  • Коефициент на усилване: G
  • Ниво на страничните листи в диаграмата на насоченост: μ
  • Коефициент на разсейване: β
  • Действаща височина: hд
  • Ефективна площ: A
  • Коефициент на използване на отвора (апертурата): ν
  • Ефективност: g=ν
  • Лента на пропускане: 2Δf/f0
  • Максимална и минимална работна честота: fmax, fmin
  • Коефициент на покритие: kп=fmax/fmin
  • Шумова температура: Та[1]

Видове антениРедактиране

Антените се класифицират по различни признаци – принцип на действие, режим на работа, конструкция, материал, състав, насоченост, честотен обхват, поляризация, начин на захранване, вид монтаж.[1][2]

Според принципа на действиеРедактиране

  • Антени със стояща вълна на тока – вибраторни антени, многовибраторни синфазни антени, процепни антени
  • Антени с бягаща вълна на тока – директорни антени (Антени тип вълнови канал или Яги-антени), спирални антени, антени с повърхностни вълни (диелектрични антени и антени с периодична структура)
  • Апертурни антени – вълноводни излъчватели, рупорни антени, огледални антени, лещови антени.

Според режима на работаРедактиране

 
Анимация на приемане на радиовълни от хоризонтален симетричен полувълнов вибратор. Изобразената вълна показва изменението на напрегнатостта на електричното поле (E, зелен цвят). Антената е свързана с приемника, чието входно съпротивление е означено с R. Показано е изменението на тока по двете рамена на вибратора: полярността – със знаците (+) положителна и () отрицателна, а посоката – с черни стрелки. Амплитудата на индуктираното напрежение V в антената е изобразена с червена вълна.
 
Антенна система „Atacama Compact Array“ (ACA) на надморска височина 5000 метра в Северна Чили – 4 бр. 12-метрови и 12 бр. 7-метрови отделни огледални антени, произведени в Япония. За изследване на небесни обекти с голям ъглов размер, като молекулярни облаци и близки галактики.
 
Символ за изобразяване на антена в електронните схеми.
  • Предавателни
  • Приемни
  • Приемо-предавателни

Според конструкциятаРедактиране

  • Линейни антени
  • Плоски антени
  • Пространствени антени
  • Проводникови антени – вибраторни (диполни и телескопични) и жични
  • Логопериодична антена
  • Антени-кули
  • Антени-мачти
  • Рамкови антени, Антени „Двоен квадрат“
  • Феритни антени
  • Печатни антени
  • Микролентови антени
  • Съставни антени (пач-антени)
  • Антени с обработка на сигналите (смарт-антени)

Според материалаРедактиране

  • Метални
  • Диелектрични
  • Хибридни

Според съставаРедактиране

  • Едноелементни антени
  • Антенни системи (решетки)
    • Едномерни
    • Двумерни
    • Тримерни

Според честотния обхватРедактиране

  • Настроени антени
  • Широколентови антени (широкоспектърни)
  • Свръхширокодиапазонни антени

Според насоченосттаРедактиране

  • Ненасочени антени (точкова, изотропна антена) – D = 1
  • слабонасочени 1 < D < 10
  • среднонасочени 10 < D < 100
  • силнонасочени (остронасочени) антени D > 100

Според начин на захранванеРедактиране

  • Активни антени.
  • Пасивни антени.

Изчисление и изследване на антениРедактиране

 
Амплитудно разпределение на тока по дължината на несиметричен четвъртвълнов вибратор (а) и симетричен полувълнов вибратор с вертикална част (b).

Изчислението на антените е сложен процес, който е елемент от проектирането. Включва изчисляване на конструктивните и електрическите параметри и на характеристиките на антените. Извършва се по частни методики за отделните видове антени.[3][4]

Ориентировъчно дължините на вибраторните антени (диполи) са близки до кратни стойности на дължината на вълната, например несиметричен четвъртвълнов вибратор (L=λ/4), симетричен полувълнов вибратор (L=λ/2), вълнов вибратор (L=λ) и т.н. Кратните стойности могат да се умножат с определени коефициенти за получаване на резонансни дължини (при които входното съпротивление е чисто активно). Следователно антенните излъчватели (вибратори, процепи, спирали, рупори) с по-големи размери са предназначени за по-големи дължини на вълната (по-ниски честоти), а тези с по-малки размери – за по-малки дължини на вълната (по-високи честоти).

Сложните конструкции на антени се изчисляват чрез техни заместващи схеми – еквивалентни схеми. Те представляват нискочестотни аналози на антените, в които техните елементите се заменят със съответните импеданси, капацитети и индуктивности.

Изследването на антените обхваща експериментално определяне на:

  • характеристиките на антените (изследване на ХН и построяване на ДН, изследване на ПХ и построяване на ПД;
  • параметрите на антените (коефициент на усилване, входно съпротивление, честотна лента на пропускане и др.)

ГалерияРедактиране

Цилиндричните форми на последните 4 снимки са метални обвивки около параболичните рефлектори. Те защитават антената от сигнали, идващи от странични посоки. Това позволява на антените, разположени близо една до друга, да използват еднакви микровълнови честоти, без да си пречат. Антените имат тънки пластмасови листове над отворите им, за предпазване от валежи.


Вижте същоРедактиране

ИзточнициРедактиране

  1. а б в г Д. Д. Дамянов – Антенни устройства, Военно издателство, София, 1978 г.
  2. Михайлов М. А. – Специализирани антени, Шумен, 2001 г.
  3. Дамянов Д. Д. – Проектиране на радиолокационни антенно-фидерни устройства. ВТС, 1978 г.
  4. Д. Д. Дамянов, М. А. Михайлов, Д. Х. Димитров – Ръководство за лабораторни упражнения по антенни устройства, ВТС, 1989 г.

Външни препраткиРедактиране