Статистическа механика

(пренасочване от Статистическа физика)
Серия статии на тема
Статистическа физика


Статистическата механика, също понякога наричана и статистическа физика, е приложението на математическата теория на вероятностите към класическата и квантовата механика.

Статистическата механика описва взаимодействията между голям брой частици (най-често от порядъка на числото на Авогадро) и свърза свойствата на елементарните частици с тези на макроскопичните обекти и свойства на материалите, както се наблюдават във всекидневния живот. Познатата ни термодинамика намира своята обосновка в рамките на статистическата физика. Главното предимство на статистическата механика пред термодинамиката е способността на статистическата механика да обясни свойствата на веществата на базата на теорията за взаимодействията между съставляващите ги частици.

Централно място и в двете теории заема идеята за ентропия, но в статистическата механика тя е функция от броя на възможните микросъстояния, докато в термодинамиката е емпирично изведена величина.

Основен принцип на статистическата механика

редактиране

Основния принцип на статистическата механика гласи:

Дадена изолирана система в равновесие може да бъде намерена във всяко едно от възможните си микросъстояния с еднаква вероятност

Т.е. когато дадена изолирана система се намира в равновесие, тя може да е във всяко едно от възможните за нея микросъстояния, като няма физическа причина, която да привилегирова дадено микросъстояние, т.е. ако означим общия брой възможни микросъстояния с Ω, вероятността системата да е в кое да е от тях е ρ=1/Ω.

Като следствие от този принцип може да се посочи, че термодинамичното (макро-) състояние на системата е това, което е резултат от най-голям брой микросъстояния.

Частична обосновка за този постулат може да се намери в Теоремата на Лиувил, която гласи, че ако плътността на възможните състояния във фазовото пространство е равномерна в дадент момент, то тя остава такава с времето. Това позволява да се дефинира функцията информация (в рамките на теорията на информацията):

 , където ρ е вероятността системата да се намира в дадено микросъстояние, а с   се обозначава средната стойност.

Лесно може да се пресметне, че когато всички ρi са равни помежду си, I е в минимум, което може да се интерпретира, че когато системата е в равновесие, информацията за нея е минимална. На практика, в теорията на информацията по-често се използва функцията -I, която понякога се нарича „липса на информация“ и е еквивалентна на ентропията в статистическата механика и термодинамиката.

Микроканонично разпределение

редактиране

Микроканоничното множество се отнася за затворена система, за каквато важи и втория принцип на термодинамиката. Ентропията на такава система може само да нараства, а когато ентропията е в максимум, термодинамичната система е в равновесие. Енергията на затворена система е константа – E, а за системата са достъпни само тези микросъстояния, в които енергията на системата би била равна на E. Нека обозначим с Ω(E) тези микросъстояния, които са достъпни за система с енергия E. В термодинамиката Ω наричаме термодинамична вероятност и тя се дефинира като броят на микросъстоянията, с които може да се осъществи дадено макросъстояние. Тогава ентропията на системата се изразява с:

 , където S е ентропията, а kBконстантата на Болцман.

Канонично разпределение

редактиране

С идеята за канонично разпределение може да се изведе вероятността   дадена макроскопична система да е в термично равновесие, при положение, че се намира в произволно кое да е микросъстояние с енергия  . Тази вероятност се изчислява според разпределението на Болцман:

 
с  ,

Самото използване на температурата   като физична величина е възможно само при термично равновесие на разглежданата система с околната среда. Сборът от вероятностите на отделните микросъстояния трябва да дава 1 (условие за нормировка), което определя стойността на статистическата сума в знаменателя:

 

където   е енергията на  тото микросъстояние на системата. Статистическата сума е мярка за позволените за дадена система микросъстояния при дадена температура.

Така, вероятността дадена система, при температура   да се намира в микросъстояние с енергия   е:

 

За такава система (в термично равновесие) можем да изразим следните величини като функция от статистическата сума:

Свободна енергия на Хелмхолц:  
Вътрешна енергия:  
Налягане:  
Ентропия:  
Свободна енергия на Гибс:  
Енталпия:  
Специфичен топлинен капацитет при постоянен обем:  
Специфичен топлинен капацитет при постоянно налягане:  
Химичен потенциал:  

Голямо канонично разпределение

редактиране

Ако разглежданата система не е затворена, броят частици не е постоянен с времето, трябва да разглеждаме химични потенциали, а вместо каноничното разпределение трябва да се използва голямото канонично разпределение:

 

Където   е броят на частиците от j-тия вид в i-тото микросъстояние. Понякога, към тази функция могат да се добавят различни величини, които са първи интеграли, които спокойно могат да бъдат разглеждани като термодинамични (и химични) потенциали. В повечето системи, които се изучават от физиката на кондензираната материя, са нерелативистични, така че масата се запазва. Повечето системи във физиката на кондензираната материя са с постоянен брой частици, и масата (в нерелативистичния смисъл на думата) е просто сборът на масите на отделните мастици. () , където Ni е броят частици от i-тия вид (всеки вид частици се характеризира с дадена плътност). Масата е обратно пропорционална на плътността, а спрегната на плътността променлива е налягането.

Величини, които могат да се дефинират като производни на статистическата сума на голямото канонично разпределение:

Голям термодинамичен потенциал:  
Вътрешна енергия:  
Брой частици:  
Ентропия:  
Свободна енергия на Хелмхолц:  

Източници

редактиране
    Тази страница частично или изцяло представлява превод на страницата Statistical mechanics в Уикипедия на английски. Оригиналният текст, както и този превод, са защитени от Лиценза „Криейтив Комънс – Признание – Споделяне на споделеното“, а за съдържание, създадено преди юни 2009 година – от Лиценза за свободна документация на ГНУ. Прегледайте историята на редакциите на оригиналната страница, както и на преводната страница, за да видите списъка на съавторите. ​

ВАЖНО: Този шаблон се отнася единствено до авторските права върху съдържанието на статията. Добавянето му не отменя изискването да се посочват конкретни източници на твърденията, които да бъдат благонадеждни.​