Квадрат

геометрична фигура
Disambig.svg Тази статия е за четириъгълника. За повдигането на квадрат вижте степенуване (математика). За римския политик вижте Квинт Корнелий Квадрат.

Квадратът (от латински: quadrātum – „четириъгълник“) представлява равнинна геометрична фигура, правилен четириъгълник. Има четири равни страни и четири равни ъгли.

ОпределениеРедактиране

Квадратът е правилен многоъгълник с четири страни и ъгли, но може да се дефинира и посредством други геометрични фигури като:

СвойстваРедактиране

 
Квадрат с дължина на страната   и диагонал  

За квадрата са валидни следните твърдения:

  • Четирите му страни са равни.
  • Четирите вътрешни ъгли са еднакви и сборът им е 360° (2π), затова всичките са прави (по 90°).
  • Има четири оси на симетрия – двата диагонала и двете симетрали на страните.
  • Има център на симетрия – пресечната точка на диагоналите.
  • Двата диагонала са равни, разполовяват се и са взаимно перпендикулярни.
  • Диагоналите разполовяват ъглите на квадрата.
  • Пресечната точка на диагоналите му е център на вписаната и на описаната окръжност.
  • Всеки квадрат е подобен на всеки друг квадрат.
  • Квадратът е правилен четириъгълник с централен ъгъл π /2 и  , където R е радиусът на описаната около квадрата окръжност.

За да начертаем квадрат, е достатъчно да знаем дължината на страната му или дължината на диагонала му.

ФормулиРедактиране

Формули за квадрат
Дължина на страната  
Дължина на диагонала  
Периметър  
Лице  
 
Радиус на описаната окръжност  
Радиус на вписаната окръжност  

ПостроениеРедактиране

Тъй като 4 е степен на 2, квадрат може да бъде построен с линийка и пергел:[1]

 

Квадратът в неевклидовата геометрияРедактиране

 
Шест квадрата покриват сфера, като във всеки връх се допират точно три квадрата с вътрешни ъгли от по 120°. Това се нарича сферичен куб.
 
Евклидовата равнина може да бъде покрита с квадрати, като във всеки връх се допират точно четири квадрата с вътрешни ъгли по 90°. (Вижте Квадратно пано)
 
Квадрати покриват хиперболичната сфера, като във всеки връх се допират точно пет квадрата с вътрешни ъгли по 72°. (Вижте Петоредово квадратно пано)

В неевклидовата геометрия квадратите са по-общи многоъгълници с четири равни страни и равни ъгли.

В сферичната геометрия квадратът е многоъгълник, чиито ръбове са дъги от големи окръжности на равни разстояния, които се пресичат в равните ъгли. За разлика от квадрата в равнинната геометрия ъглите на сферичния квадрат са по-големи от правия ъгъл.

В хиперболичната геометрия не съществуват квадрати с прави ъгли. Там квадратите имат остри ъгли.

Вижте същоРедактиране

ИзточнициРедактиране