Бензенът (ост. бензол, C6H6) е най-простият бензоиден ароматен въглеводород, широко използван органичен разтворител, образуващ азеотропна смес с вода. Представлява безцветна, лесно възпламенима течност със сладникав аромат. Той е отровен и канцерогенен. Влиза в състава на бензина и нефта. Mоже да бъде синтезиран чрез тримеризация на ацетилен при нагряване над активен въглен. Основната му употреба е за производството на етилбензен и кумен, чиито годишни добиви достигат милиони тонове.

История Редактиране

Откриване Редактиране

Бензенът за първи път е отделен през 1825 г. от Майкъл Фарадей чрез нагряване на китова мас. Тогава Фарадей го нарича „водороден бикарбурет“. През 1845 г. Чарлз Менсфийлд отделя бензен от каменовъглена смола, а четири години по-късно патентова промишлен начин за синтез на бензена.

Циклична формула Редактиране

 
Формули на бензена в исторически план (от ляво надясно) Клаус (1867), Дюар (1867), Ладенберг (1869), Армстронг (1887), Тиле (1899) и Кекуле (1865)

Фарадей открива и емпиричната формула на бензена, C6H6. Според тогавашните разбирания резултатът е парадоксален, защото противоречи на представата, че в своите съединения въглеродът образува четири единични връзки, а водородът – една. В търсене на правилната структура на бензена, която да обясни необичайната стабилност и химична инертност, много учени, сред които Джеймс Дюар, Адолф Карл Лудвиг Клаус и Алберт Ладенбург, предлагат неправилни структури.

Първият учен, предположил, че бензенът има пръстеновидна структура, е немският химик Фридрих Август Кекуле (1865 г.). Известен анекдот гласи, че една вечер, когато Кекуле мислел върху загадъчната структура на бензена, той заспал и му се присънил уроборос – змия, която е захапала опашката си. Именно този символ, според легендата, навел химика на извода, че бензенът има пръстеновидна структура с алтерниращи 3 двойни връзки.

Цикличната природа на бензена окончателно е потвърдена от кристалографа Катлийн Лонсдейл през 1929 г.[3][4]

Електронна структура Редактиране

 
Атомни и молекулни орбитали на бензена
 
Различни начини за представяне на бензен

Особеностите в структурата на бензена се обясняват от съвременните квантово-механични представи за електронната конфигурация на атомите.[5]

Атомните орбитали на всеки въглероден атом от бензеновото ядрое в sp2-хибридизация. Така тези атоми имат има три хибридни sp2-АО и една нехибридна p-АО. Трите хибридни sp2 орбитали лежат на една равнина и имат правилна плоскотриъгълна конфигуриция. Шестте въглеродни атома образуват плосък пръстен. Всичките шест нехибридни p-АО са разположени перпендикулярно на равнината на шестатомния пръстен. Те частично се припокриват и формират кръгова делокализирана 6π-връзка.[5] Три от тях са с по-ниска енергия от тази на изходните 2р-атомни орбитали и са свързващи молекулни орбитали. Останалите три са с по-висока енергия от тази на изходните 2р-атомни орбитали и са антисвързващи.

Данните от рентгеноструктурния анализ потвърждават тези представи за структурата на бензена. Установена е еднаква дължина на всички C-C връзки 0,139 nm и C-H връзки 0,109 nm в молекулата. Дължината на C-C връзките по стойност заема междинно положение в сравнение с дължините на една σ-C-C връзка (0,154 nm) и C=C връзка (0,134 nm). Порядъкът на всички C-C връзки в бензена е еднакъв – 1,67.[5]

Физични свойства Редактиране

Бензенът е безцветна течност с миризма, подобна на бензиновата. Топи се при 5,5 °С, а кипи на 80,1 °С. Относително високите температури на топене и кипене на бензена в сравнение с тази на хексана (68,8 °С), който има по-голяма молекулна маса, се обяснява с плоската му и стабилна структура, при която Вандерваалсовите сили между молекулите са по-здрави. Бензенът има голям коефициент на пречупване. Разтваря се слабо във вода и добре в много органични разтворители. Бензенът е добър разтворител на органични съединения.[6]

Химични свойства Редактиране

В молекулата на бензена има стабилна ароматна 6π-връзка. Химичните му свойства се определят от полученото стабилно бензеново ядро в молекулата, което се стреми да запази структурата си. Затова за бензена са характерни предимно заместителни реакции, които са критерии за ароматния характер, а не толкова присъединителни реакции.

Електрофилни заместителни реакции Редактиране

Реакциите протичат по общ SE2-механизъм. Електрофилните заместители могат да бъдат катиони – NO2+, полярни молекули – SO3, или неполярни молекули като Cl2 и Br2, които се поляризират под действие на катализатор.

Халогенирането на бензен протича с катализатор Люисови киселини – AlCl3, FeCl3, FeBr3, ZnCl2 и др.

 

Нитрирането на бензен се извършва при слабо нагряване с нитрирна смес – смес от концентрирана HNO3 и H2SO4 в отношение 1:2, в която се образува нитрониевият йон:

 .

 

Образува се жълта маслообразна течност с мирис на горчиви бадеми – нитробензен.

Сулфонирането на бензен се осъществява се с концентрирана H2SO4при нагряване:

 

Алкилирането на бензен е метод за получаване на негови производни. Реакцията протича с халогеноалкан или алкен и катализатор Люисова киселина.

 

При ацилирането на бензен с киселинни хлориди в присъствие на катализатор Люисови киселини се получават мастно-ароматни кетони. При взаимодействието на етаноилхлорид и бензен се получава метилфенилкетон (ацетофенон):

 

Присъединителни реакции Редактиране

Протичат трудно поради стабилността на делокализираната 6π-връзка на ароматното ядро, която трудно се разкъсва. Реакциите протичат при по-груби условия. Бензенът не присъединява халогеноводороди, вода и други полярни съединения, за разлика от алкените и алкините.

В присъствие на активни катализатори – Ni или Pd/C, при висока температура и налягане, е възможно пълно хидриране:

 .

При взаимодействие на бензен с хлор или бром и облъчване с UV лъчи протича заместителна реакция по верижно-радикалов механизъм:

 

Възможно е фотохимично или термохимично циклоприсъединяване, подобно на реакции на Дилс–Алдер.

Бензенови радикали могат да се получат при взаимодействие с активни метали, които са донори на електрони:

 .

Окисление Редактиране

Бензеновото ядро е много устойчиво спрямо окислители, но може да се окисли с кислород от въздуха при нагряване и катализатор V2O5 до фенол. Бензенът и хомолозите му горят с пушлив пламък.

Производни Редактиране

При заместване на един или повече от водородните атоми в бензеновото ядро с друга функционална група се получават множество производни – фенол, толуен и анилин, бифенил, нафтален, антрацен. Краят на свързването на бензеновите ядра се осъществява при безводородната алотропна форма на въглерода – графит.

Получаване Редактиране

Дестилация на каменовъглено масло Редактиране

Бензенът се получава чрез дестилация на лекото каменовъглено масло, но така получен е замърсен с около 0,5% тиофен, който има близка температура на кипене и се отделя чрез разклащане с концентрирана сярна киселина.[6]

От калциев бензоат Редактиране

Бензен се получава чрез нагряване на калциев бензоат с калциев хидроксид или натриев бензоат с натриева основа. Тази реакция е подобна на реакцията на Дюма за получаване на мастни въглеводороди:[6]

 

От фенол Редактиране

Друг метод е чрез дестилация на фенол с цинков прах:[6]

 

Метод на Бертло (риформинг) Редактиране

Тримеризация на етин (ацетилен) при прекарването му през нажежена тръба, при което той се полимеризира (Метод на Бертло)[6]. Процесът се нарича риформинг. Протича в присъствие на платинови катализатори:

 

Дехидроциклизация и ароматизация на нефт Редактиране

 

Употреба Редактиране

 
Бутилка с бензен

Бензенът се използва главно като суровина за производството на други химикали. Около 80% от него се използва за получаването на етилбензен, кумен и циклохексан. От тях най-масова употреба намира етилбензенът, прекурсор за синтеза на стирен, който от своя страна влиза в състава на полимери и различни видове пластмаси. Куменът е източник за получаването на фенол, необходим за направата на смоли и лепила. Циклохексан е суровина за синтеза на найлони. Малки количества от самия бензен се използват за получаване на някои видове синтетичен каучук, смазки, бои, детергенти, лекарства, експлозиви и пестициди.

В лабораторните изследвания толуенът напълно е заменил бензена като органичен разтворител, най-вече поради по-ниската си токсичност, като свойствата им на разтворители са много сходни.

В бензина се включва като добавка, повишаваща октановото число и стабилизираща горивния процес.

Токсичност Редактиране

Професионално заболяване от вдишване на бензенови пари, понякога от контакт с кожата е бензеновото отравяне. При тежки случаи се наблюдават смущения на централната нервна система, гърчове, повръщане, безсъние и др. При по-лекото бензеново отравяне – увреждане на кръвотворните органи с промени в количеството и състава на белите кръвни клетки, кръвоизливи в кожата и лигавицата (хеморагична диатеза) и др. При продължително излагане на влиянието на бензена се развиват различни форми на рак.

Вижте също Редактиране

Източници Редактиране

  1. chem.libretexts.org. Посетен на 25 януари 2019 г.
  2. Benzene. Посетен на 11 юни 2018 г. Дата: 2016 г. (на английски)
  3. K. Lonsdale. The Structure of the Benzene Ring in Hexamethylbenzene. // Proceedings of the Royal Society 123A. 1929. с. 494.
  4. K. Lonsdale. An X-Ray Analysis of the Structure of Hexachlorobenzene, Using the Fourier Method. // Proceedings of the Royal Society 133A. 1931. с. 536 – 553.
  5. а б в Петров, Галин. Органична химия. София, Университетско издателство „Св. Климент Охридски“, 2006. ISBN 978-954-07-2382-2. с. 230 – 274.
  6. а б в г д Николов, М. Учебник по Химия за студенти по медицина и стоматология. София, АРСО, 2012. ISBN 978-954-8967-26-Х.

Литература Редактиране

  • Vollhard, K. Peter C.; Schore, Neil C. – Organic Chemistry: structure and function, 4th edition, 2002
  • Ганка Робова, Лилия Величкова. „Теми по органична химия за ученици и кандидат-студенти“, изд. Абагар
    Тази страница частично или изцяло представлява превод на страницата „Benzene“ и страницата „Бензол“ в Уикипедия на английски и руски език. Оригиналните текстове, както и този превод, са защитени от Лиценза „Криейтив Комънс – Признание – Споделяне на споделеното“, а за творби създадени преди юни 2009 година – от Лиценза за свободна документация на ГНУ. Прегледайте историята на редакциите на оригиналните страници тук и тук, за да видите списъка на техните съавтори. ​

ВАЖНО: Този шаблон се отнася единствено до авторските права върху съдържанието на статията. Добавянето му не отменя изискването да се посочват конкретни източници на твърденията, които да бъдат благонадеждни.